How to Teach Artificial Intelligence Some Common Sense > 자유게시판

후기게시판

유품정리, 빈집정리, 이사정리, 방문견적은 유빈이방에서

후기게시판

How to Teach Artificial Intelligence Some Common Sense

페이지 정보

Foster  0 Comments  6 Views  25-10-25 03:51 

본문

Five years ago, the coders at DeepMind, a London-based artificial intelligence company, watched excitedly as an AI taught itself to play a basic arcade sport. They’d used the new strategy of the day, deep learning, on a seemingly whimsical process: mastering Breakout,1 the Atari recreation by which you bounce a ball at a wall of bricks, making an attempt to make each vanish. 1 Steve Jobs was working at Atari when he was commissioned to create 1976’s Breakout, a job no other engineer needed. He roped his friend Steve Wozniak, then at Hewlett-­Packard, into helping him. Deep studying is self-schooling for machines; you feed an AI enormous amounts of information, Brain Health Formula and eventually it begins to discern patterns all by itself. On this case, the information was the activity on the screen-blocky pixels representing the bricks, the ball, and the player’s paddle. The DeepMind AI, Brain Health Formula a so-called neural community made up of layered algorithms, wasn’t programmed with any data about how Breakout works, its guidelines, its goals, and even the way to play it.



The coders simply let the neural net examine the outcomes of each motion, every bounce of the ball. Where would it lead? To some very impressive abilities, it seems. During the primary few video games, the AI flailed round. But after enjoying just a few hundred instances, it had begun accurately bouncing the ball. By the 600th recreation, the neural web was using a extra skilled move employed by human Breakout players, chipping by way of an entire column of bricks and setting the ball bouncing merrily alongside the top of the wall. "That was a giant surprise for us," Demis Hassabis, CEO of DeepMind, said on the time. "The strategy fully emerged from the underlying system." The AI had shown itself able to what appeared to be an unusually refined piece of humanlike thinking, a grasping of the inherent concepts behind Breakout. Because neural nets loosely mirror the construction of the human mind, the theory was that they should mimic, in some respects, our own type of cognition.



This moment appeared to serve as proof that the speculation was right. December 2018. Subscribe to WIRED. Then, final yr, pc scientists at Vicarious, Brain Health Formula an AI agency in San Francisco, offered an attention-grabbing reality verify. They took an AI just like the one used by DeepMind and trained it on Breakout. It played nice. But then they barely tweaked the layout of the game. They lifted the paddle up higher in one iteration; in another, they added an unbreakable area in the middle of the blocks. A human player would be able to quickly adapt to those modifications; the neural web couldn’t. The seemingly supersmart AI may play only the exact fashion of Breakout it had spent a whole bunch of video games mastering. It couldn’t handle one thing new. "We humans are not just pattern recognizers," Dileep George, a pc scientist who cofounded Vicarious, tells me. "We’re also building models in regards to the things we see.



And these are causal fashions-we perceive about trigger and effect." Humans interact in reasoning, making logi­cal inferences concerning the world round us; we've a store of common-sense data that helps us figure out new conditions. After we see a game of Breakout that’s a bit completely different from the one we just played, Brain Health Formula we realize it’s prone to have principally the same rules and objectives. The neural internet, on the other hand, hadn’t understood something about Breakout. All it may do was comply with the sample. When the sample changed, Neuro Surge Product Page it was helpless. Deep learning is the reigning monarch of AI. In the six years because it exploded into the mainstream, it has turn into the dominant approach to help machines sense and understand the world round them. It powers Alexa’s speech recognition, Waymo’s self-driving automobiles, Brain Health Formula and Google’s on-the-fly translations. Uber is in some respects a large optimization problem, using machine studying to determine where riders will want cars. Baidu, the Chinese tech big, has greater than 2,000 engineers cranking away on neural net AI.

댓글목록

등록된 댓글이 없습니다.

X

회사(이하 '회사')는 별도의 회원가입 절차 없이 대부분의 신청관련 컨텐츠에 자유롭게 접근할 수 있습니다. 회사는 서비스 이용을 위하여 아래와 같은 개인정보를 수집하고 있습니다.

1) 수집하는 개인정보의 범위
■ 필수항목
- 이름, 연락처

2) 개인정보의 수집목적 및 이용목적
① 회사는 서비스를 제공하기 위하여 다음과 같은 목적으로 개인정보를 수집하고 있습니다.

이름, 연락처는 기본 필수 요소입니다.
연락처 : 공지사항 전달, 본인 의사 확인, 불만 처리 등 원활한 의사소통 경로의 확보, 새로운 서비스의 안내
그 외 선택항목 : 개인맞춤 서비스를 제공하기 위한 자료
② 단, 이용자의 기본적 인권 침해의 우려가 있는 민감한 개인정보는 수집하지 않습니다.

3) 개인정보의 보유기간 및 이용기간
① 귀하의 개인정보는 다음과 같이 개인정보의 수집목적 또는 제공받은 목적이 달성되면 파기됩니다.
단, 관련법령의 규정에 의하여 다음과 같이 권리 의무 관계의 확인 등을 이유로 일정기간 보유하여야 할 필요가 있을 경우에는 일정기간 보유합니다. 기록 : 1년
② 귀하의 동의를 받아 보유하고 있는 거래정보 등을 귀하께서 열람을 요구하는 경우 은 지체 없이 그 열람, 확인 할 수 있도록 조치합니다.

4) 개인정보 파기절차 및 방법
이용자의 개인정보는 원칙적으로 개인정보의 수집 및 이용목적이 달성되면 지체 없이 파기합니다.
회사의 개인정보 파기절차 및 방법은 다음과 같습니다.
개인정보는 법률에 의한 경우가 아니고서는 보유되는 이외의 다른 목적으로 이용되지 않습니다.
종이에 출력된 개인정보는 분쇄기로 분쇄하거나 소각을 통하여 파기합니다.
전자적 파일 형태로 저장된 개인정보는 기록을 재생할 수 없는 기술적 방법을 사용하여 삭제합니다.

개인정보관리
개인정보관리 책임자 : 이기태
연락처 : 010 - 4555 - 2776
이메일 : ttzzl@nate.com
회사소개 개인정보보호정책 이메일추출방지정책
상호 : 한솔자원 (유빈이방) 사업자등록번호 : 511-42-01095
주소 : 대구 달서구 월배로28길 8, 102호(진천동)
집하장(창고) : 대구시 달성군 설화리 553-61
H.P : 010 - 4717 - 4441

Copyright(c) 한솔자원 All right reserved.
상담문의 : 010 - 4717 - 4441